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Abstract-For many engineering problems it can be assumed that the damaged material elastic
response at a fixed damage state is linear and hyperelastic. With this assumption, a systematic and
rigorous approach for formulating damaged elastic stress-strain relations is presented. The approach
is based on the Fourier series representations of two naturally defined damage orientation dis­
tribution functions and on a theorem on elasticity tensors, and developed resorting neither to the
notion of effective stress (strain) nor to the hypothesis of strain (stress) equivalence nor to that of
elastic energy equivalence. The proposed approach is finally illustrated by applying it to initially
isotropic materials and to unidirectional fiber-reinforced composites.

I. INTRODUCTION

In continuum damage mechanics (see e.g. Chaboche, 1988; Krajcinovic, 1989), the most
widely used constitutive models are probably the ones based on the thermodynamics of
irreversible processes with internal variables (see e.g. Gurtin, 1972; Germain et al., 1983).
Any damage model of this kind is essentially composed of three parts:

(i) choice of the damage (internal) variables macroscopically characterizing material
microstructural damage states;

(ii) formulation of the damaged material behavior at a given damage state;
(iii) establishment of the evolution equations for the damage variables, relative to a

loading history,

The present work aims at investigating parts (i) and (ii), with particular reference to the
mathematical nature of damage variables and to the damaged elastic response.

As has been pointed out by several authors (see e,g. Krajcinovic, 1989; Ju, 1990), the
predictive utility of a continuum damage model with internal variables depends largely on
the degree of approximation with which the geometric characters and macroscopic effects
of the microdefects (microvoids and microcracks) are described by the chosen damage
variables. One of the important problems to be resolved in the present development of
continuum damage mechanics is the lack of uniformity and rigor in the choice of damage
variables (see Rabier, 1989, for a critical review of this matter). In the present work, trying
to find a mathematical solution to this problem, we are led to define damage orientation
distribution functions and to study the radially symmetric scalar-valued functions. The
mathematical nature of damage variables is then brought out by establishing a rep­
resentation lemma for the radially symmetric scalar-valued functions, applying it to damage
orientation distribution functions and then expanding them into Fourier series.

In most of the existing damage theories, the damaged elastic strain-stress (or stress­
strain) response is formulated by using the notion of effective stress (strain) and the
hypothesis of strain (stress) equivalence or stress-energy (strain-energy) equivalence (Lemai­
tre and Chaboche, 1985; Cordebois and Sidoroff, 1979). In the present work, a different
and more fundamental approach initiated by Ladeveze (1983) is substantially developed.
This approach rests on a theorem on (undamaged or damaged) elasticity tensors and
requires neither the above notions nor the relevant hypotheses. It is applicable to both
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initially isotropic and anisotropic elastic materials and has the advantage of neglecting only
the terms related to higher spherical harmonics. To be more specific, a general procedure
for obtaining a finite description of any material damage state is presented in coordinate­
free form; material symmetries are systematically taken into account; the one-to-one
relationship between a pair of modulus orientation distribution functions and a fourth­
order elasticity tensor is clearly stated (Theorem 2) and provided with an existence proof;
a general expression for the damaged elasticity in terms ofdamage variables and undamaged
(isotropic or anisotropic) elasticity tensors is specified [eqn (49) together with eqns (45)­
(48)]; a detailed discussion of restrictions on the choice of damage variables is given; a
constructive and important example, the damage of unidirectional fibre-reinforced
composites, is treated. To a certain extent, these new elements complete the approach
introduced by Ladeveze (1983, 1990, 1993) and make it more explicit and more flexible.

An outline of the paper is as follows. In Section 2 we give a brief account of the
adopted notation. Section 3 contains a representation lemma for radially symmetric scalar­
valued functions and a general description of how to expand a square-integrable scalar­
valued orientation distribution function in a convergent Fourier series. In Section 4, we
first define the elongation and bulk modulus orientation distribution functions and then,
with the help of the irreducible decomposition of elasticity tensors, show that there exists a
one-to-one correspondence between these two functions and an elasticity tensor. Section 5
is devoted to the development of a systematic approach to damaged elastic stress-strain
relations. After making the hypothesis that the damaged elastic response at a fixed damage
state is linear and hyperelastic, two damage orientation distribution functions are intro­
duced and expanded in two Fourier series, the coefficients of which behave as natural
damage variables. Based on the main results of Section 4, a general and consistent method
of constructing the damaged elasticity tensor is described. The developed approach is then
illustrated by applying it to initially isotropic materials in Section 6 and to unidirectional
fibre-reinforced composites in Section 7. Some concluding remarks are given in Section 8.

2. NOTATION

Direct or coordinate-free notation will be employed as much as possible. This permits
us to write formulae in rather clear and compact forms.

As a general rule, light-face (Greek or Latin) letters denote scalars; bold-face min­
uscules and majuscules designate vectors and second-order tensors, respectively; outline
letters are reserved for fourth-order tensors; script majuscules stand for sets, spaces,
domains or groups. The principal notations are now introduced.

Let 'F" be a three-dimensional inner-product space over the reals f!ll.. We denote by ft'

the space of all linear transformations (second-order tensors) on Y and by IL the space of
all linear transformations (fourth-order tensors) on ft'. The inner products of Y, ft' and IL
are labelled as follows: a.b for a, bEY, A: B for A, B Eft', and A :: IB for A, IB E IL.

The transposes AT and AT of A E ft' and A E IL are defined by

ATx.y :=x.Ay, VX,yEY; ATX:Y:=X:AY, VX,YE2.

We say that A is symmetric if AT = A,positive (semi-) definite ifx.Ax > 0 (~o) for x oF o.
Similarly, A is said to have the major symmetry if AT = A and to be positive (semi-) definite
if X: AX> 0 (~o) for X oF o.

Given a, bEl"~, A,BE ft' and CE IL, we define a 0 b, A ® B, A ® B, A ® B, C ® A and
A ® C through

(a 0 b)x := (b.x)a, Vx E 1"~; (A ® B)X := (B: X)A, VX Eft';

(A 0 B)(x 0 y):= (Ax) 0 (By), Vx, YEY;

(A ® B)(x ® y) := (Ay) 0 (Bx), VX,yE Y;

(I[ 0 A)X:= (A: X)C, VX Eft'; (A ® OX := (I[ :: X)A, VX E IL.
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Let "j/~ 0 "j/' designate the set of all finite linear combinations of a ® b with a, b E'f/·. Then
2 can be identified with r ® 1/' via (a 0 b)x := (b.x)a for all xE'I/. Analogously, IL can
be identified with 20 2. The products A <8' B and A ® Bare of Kronecker type. With the
help of the identities (Ax) 0 (By) == A(x ® y)BT and (x 0 y)T == Y0 x, it can be verified
that

In particular, the transposition mapping lr and the symmetric fourth-order tensor identity
~ are given by

lr = 1® I, 0 = ~ (I <8' 1+ 1 ® I),

where 1 presents the second-order identity tensor.
In what follows, n will always denote a three-dimensional unit vector, Y' the unit sphere

{nE1'~lllnll = l} andNan elementoLV:={n0nlnEY'}. We also use the notations:

(A 0 q ::: (B ® [J) := (A: B)(iC :: [J) ; (iC0A) ::: ([J)®B) := (iC :: [J)(A: B);

(A 0 IB) :::: (iC 0 [J):= (A:: q(IB:: [J).

3. SCALAR,VALUED ORIENTATION DISTRIBUTION FUNCTIONS

3.1. Representation of the radially symmetric functions
A function p: r ---> ;JJi is said to be radially symmetric if

p(v)=p(-v), VVEr. (I)

As will be seen, the functions possessing such a property play an important role in our
work. We now give a preliminary result about them.

Lemma 1. A function p from j" to ;JJi is radially symmetric if and only if there exists a
function p : "Y' ® j'~ ---> ;JJi such that

p(v) = p(v 0 v), Vv E r. •
Proof Sufficiency is trivial and we need only show necessity. Given any vEr, it is

always possible to choose an orthonormal basis {ej, e2, e3} such that v = vtej. Suppose eqn
(I) holds and define V := v ® v. Noting that V is positive semi-definite, the square-root
JV of V is then known to be well-defined, unique and equal to IvtI(e t ® ea. Thus, we can
write

p(V) = p(vje j ) = p(~vtej) = p(lvtle j)

= p[lv,l(e j ®et)ed = p(JVe j ) = p[JVet(V)],

where e, = et(V), the function e\(V) bei% defined through Vel = IIVlle t. Therefore, there
exists a function Nv 0 v) = NV):= p(.jVet(V», such that p(v) = p(v 0 v) for all VE "Y' .

•
A radially symmetric function as precedently defined is in fact isotropic relative to the

group '§:= {I, - I} and anisotropic relative to the group (9(3) of all three-dimensional
orthogonal tensors. Lemma I can easily be shown to hold in the case where 'r is any finite
dimensional vector space. In particular, settingr = .CJ1t, we obtain the classical rep­
resentation result for the even functions from fJIl to fJIl.
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3.2. Expansion of the scalar-valued orientation distribution functions
Let cp be some macroscopic scalar property ofa material. At a given instant, cp generally

depends on the material point, identified with the reference position vector x, and on the
orientation, specified by the unit vector 0; that is, cp = cp(x,o). Since only the dependence
of cp on 0 is concerned in subsequent investigations, it is convenient to consider x as fixed
and drop the dependence of cp on x. Then we write

cp = f(o), f: Y' --> ~ (2)

and callf, the scalar-valued function defined on the unit sphere Y', the orientation distribution
function (o.dJ.) of the property cpo Concretely cp may be the effective surface density of
microdefects, Young's modulus, the wave speed, the electrical resistivity, the fatigue limit,
etc. (Lemaitre and Dufailly, 1987).

The functionf(D) must satisfy the condition

f(o)=f(-o), VDEY', (3)

because any material property cp in a direction is independent of the geometrical choice
made between 0 and - 0 for defining that direction. According to lemma 1, the invariance
requirement (3) is satisfied if and only if there exists a functionJfrom </11 to £!It such that

f(D) = J(o ® D) = J(N), VDEY'. (4)

From now on, we need only study the functionJ(N) for condition (3) to be automatically
verified.

Assume J(N) to be square-integrable:

(5)

where da ( = sin ede d¢) is an infinitesimal surface element of the unit sphere Y'. It is then
known (Vilenkin, 1969; Bunge, 1982; Jones, 1985) that J(N) can be expanded in the
following Fourier series:

J(N) = fo(N)+fl (N)+f2(N) + ...

=g+G':F(N)+iG'::IF(N)+ "', VNEX,

which is convergent in mean, i.e.

(6)

In eqn (6), {I, F(N),IF(N), ... } are generalized spherical harmonics (Kanatani, 1984; Onat,
1984; Jones, 1985) and form a complete orthogonal basis for the square-integrable functions
on Y'.

For the present work, the first two tensor spherical harmonics F(N) and IF(N) are of
particular interest, which, in view of the two tensor products of Kronecker-type introduced
in Section 2, can be written in the coordinate-free forms:

F(N) = N-~I; (8a)

IF(N) = N ® N-~(I ® N+N ® 1+1 ~ N+N ~ 1+1 ® N+N ® I)
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++S(I@ I+I@I+I®I).

The orthogonality of the basis functions {I, F(N), IF(N), ... } means that

f F(N) da = 0, f IF(N) da = QD
Y' Y'

LF(N) @ IF(N) da = f IF(N) ® F(N) da = QD6""
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(8b)

(9)

where QD6 denotes the sixth-order zero tensor. It is important to remark that F(N) is symmetric
and traceless (s.t.) :

FT = F ; I :F = 0,

and that IF(N) is completely symmetric and traceless (c.s.t.) :

(lOa)

IF = (I ® I)IF = 1FT
; (Y ® X):: IF = (Y ® XT

):: IF, \iX, Y E 2'; IFI = O. (lOb)

(In component forms, these conditions are written as lFijkf = IFjikf = IFklij = lF ikjf and IFUkk = Oi;')

The first three expansion coefficients ofeqn (6) can be determined from feN) via the integrals
(see e.g. Kanatani, 1984):

If' 15fA9 = 4n .'I' feN) da, G' = 8n Y' feN) F (N) da

315 f '
G' = 32n .'I' feN) IF(N) da. (11)

Due to eqn (l0), G' turns out to be S.t. and G' to be c.s.t. With these properties, in the most
general case, G' and G' contain five and nine independent components, respectively.

It is readily seen from eqns (6) and (7) that any square-integrable o.d.f. leN) is fully
characterized by its scalar and tensor expansion coefficients {g, G/, G', ...}. If only the
leading terms (for example, the first three ones) of the series expansion, eqn (6), are retained,
afinite or discrete description is then obtained forl(N). Theoretically speaking, the accuracy
of such a description increases with the number of the leading terms being employed; in
practice, the maximum value of this number is determined by the degree of accuracy with
which the directional data of the property cp are experimentally acquired. This problem will
be further discussed in subsequent investigations.

The importance of Lemma I resides in the fact that, when combined with Fourier
series expansions, it immediately reveals that only the tensors of zero or even orders are
usable for a finite description of the o.d.f. of a scalar-valued physical or mechanical property
cpo The same result was deduced by Onat (Onat, 1984; Onat and Leckie, 1988) in a different
way.

In addition to the general symmetry requirement (3), fen) and then leN) must also
fulfil the material symmetry conditions. This has the consequence that the number of the
independent components of the tensor expansion coefficients {G/, G', ...} is reduced. For
the moment, we do not examine this problem in depth and only consider an example to
have an idea. Suppose the material in question is isotropic. Then,f(n) = f(Qn) = j(QNQT)
for each n E Y' and all Q E (D(3). If limited to studying the consequence of this isotropy
condition on G', we need only write QG'QT = G' for all Q E 0(3). It is well known that
every isotropic second-order tensor is equal to the identity tensor I multiplied by a scalar.
This result together with the traceless of G1 allows us to conclude that G1

= O.
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4. A THEOREM ON ELASTICITY TENSORS

In the previous section we studied the orientational dependence of a scalar-valued
material property cp via its Fourier series representation. In this section, attention being
devoted to linear elasticity, we first introduce two o.dJ.s for elastic properties and then
show that there exists an one-to-one correspondence between these functions and an
elasticity tensor.

4.1. Elongation and bulk modulus o.d.f.s
Denoting by S the (Cauchy) stress tensor and by E the (infinitesimal) strain tensor,

the stress-strain relation for a linear hyperelastic material takes the simple form

S = IKE, (12)

where :K, called the elasticity tensor and assumed to be positive definite, possesses two minor
symmetries resulting from those of E and S, and a major one due to the hypothesis of
hyperelasticity:

IK = (I ® I) IK = IK (I ® I); IK = IKT
. (13)

It is well known that, conditioned by eqn (13), IK includes 21 independent constants in the
general case.

Consider a pure (or uniaxial) elongation test in the direction n of the material. In such
a case, the strain tensor E has the form

E = E(N) = eN, (N = n ® n), (14)

where E is of rank one and e is the only non-zero principal strain. The stress response is
given by eqn (12) :

S = SeN) = IKE(N) = eIKN. (15)

The corresponding normal stress l1(N) = N : SeN) in the direction n and the relevant bulk
stress (p(N) = I: SeN»~ are then deduced to be

O'(N) = eN: IKN, peN) = d: IKN. (16)

Inspired by a work of Ladeveze (1983), we define the elongation and bulk modulus o.d.f.s
K(N) and K(N) as

K(N): N : SeN) = O'(N)
N :E(N) e

Substituting eqn (16) into eqn (17) yields

tr (S(N» peN)
K(N) := tr (E(N» = -e-' (17)

K(N) = N: IKN, K(N) = I: IKN. (18)

In particular, if the elastic material in question is isotropic, the functions K(N) and K(N)
become constant:

(1-v)E E
K(N) = (1+v)(1-2v)' K(N) = 1-2~' (19)

where E is Young's modulus and v Poisson's ratio. With eqn (19) and the positive defi­
niteness of IK (which is equivalent to E> 0 and -1 < v < 0.5), the geometrical pictures of
K(N) and K(N) are two spheres of different radii (except for v = 0).
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4.2. The irreducible decomposition ofelasticity tensors
When the considered material is not isotropic, the expressions of K(N) and K(N) given

by eqn (18) are much more complicated than those of eqn (19). As will be seen, for bringing
out the essential properties of K(N) and K(N) in anisotropic cases, it is efficient to carry out
the irreducible decomposition of K

Let us first note that all the fourth-order tensors [k; satisfying eqn (13) form a vector
space of dimension 21, denoted by :!I. The sets :!II, :!I2, :!I3, :!I4and :!Is, defined through

:!II := {lr = al (8) I IaE~}, :!I2 := {lr = b(1 0 I + I ® I) Ib E~},

:!I3:= {lr = I (8) x' +x' (8) I Ix' E 2, I :X' = O},

:!I4:= {lr = I <8) X' +X' 0 1+1 ®x' +X' ® IIX' E2, I: x' = O},

:!Is := {lr E:!I Ilr is c.s.t.}, (20)

are subspaces of :Y, with dim(:!II) = dim(:!I2) = 1, dim(:!I3) = dim(:!I4) = 5 and
dim(:!Is) = 9. It can be shown (see e.g. Backus, 1970; Spencer, 1970; Pratz, 1983; Jones,
1985) that the space :!I is the direct sum of :!I], :!I2, :!I3, :!I4 and :!Is :

(21 )

that is, any [k; E:!I admits the following decomposition

[k; = C( 1 (8) 1+ fJ (I 0 1+ 1 ® I) + 1 (8) A' + A' (8) 1

+10 B' +B' 0 1+1 ®B' +B' ®1+ 11%'. (22)

Here a and fJ are two scalars, A' and B' are two S.t. second-order tensors, and II%' is a C.S.t.
fourth-order tensor containing, in the general case, nine independent components. How to
calculate c(, fJ, A', B' and [k;' starting from [k; can be found in the paper by Cowin (1989)
and is, in Appendix 1, detailed when [k; is transversely isotropic.

The decomposition (21) is irreducible in the following sense. Recall that, by definition
(see e.g. Vilenkin, 1969), a (linear) representation R(~) of a group ~ in an n-dimensional
vector space 1/' is a homomorphism R from ~ to the set 2+(1/') of all invertible linear
transformations on 1/'. In other words, each element fI of ~ is associated with an element
R(fI) of 2+ (j/") such that R(flA) = R(fI)R(A) for fI, AE~. A subspace if! ,;;1/' is said to be
invariant under ~, if R(fI)w E 1f;~ for every WE 1fI' and for each flE~. A representation in j/'

is called irreducible whenever the only invariant subspaces of 1/' are the trivial ones {O} and
"f~. The irreducibility of the decomposition (21) refers to the fact that any representation
of the three-dimensional rotation group SO (3) in each of the subspaces :!I" :!I2, :!I3, :!I4
and:!ls is irreducible (Pratz, 1983; Jones, 1985),

Introducing eqn (22) into eqn (18), we get

with

K(N) = u+U':N+N: II%'N

K(N) = v+V':N

u = a+2fJ, v = 3a+2fJ

U' = 2A' +4B', V' = 3A' +4B'.

(23a)

(23b)

(23c)

(23d)

As U' and V' are S.t. and II%' is C.S.t. eqns (23a) and (23b) can be written in the equivalent
forms
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K (N) = u+ U' :F(N) + IK':: !F(N)

K(N) = v+ V': F(N),

(24a)

(24b)

where F(N) and !F(N) designate the two tensor spherical harmonics given by eqn (8a) and
(8b). In fact, equations (24a) and (24b) are the Fourier series expansions of K(N) and K(N),
whereby some underlying characteristics of K(N) and K(N) can more easily be seen.

4.3. A one-fo-one correspondence
Based on eqns (23) or (24), a simple count shows that K (N) depends on 15 independent

coefficients while K(N) is determined by six other independent ones. Recall that IK contains
21 independent coefficients. Thus arises naturally the question: does the knowledge of K(N)
and K(N) allow us to fully and uniquely determine IK? The answer can be formulated as
follows.

Theorem 2. Let two functions K: JV' ---> f!l and K:.AI ---> f!l be given by eqns (24a) and (24b).
Then there exists a unique fourth-order tensor IK with the minor and major symmetries of
eqn (13), such that, for all N Efl,

(i) K (N) = N: IKN; (ii) K(N) = I: IKN. •
Proof Existence: given two functions K and K in the forms (24a) and (24b), we can

obtain u, v, U', V' and K by

u = 4
1 f K(N) da, v = ~f K (N) da
n y 4n y

15f 151U' = 8n, K (N) F(N) da, v' = 8n y' K(N) F(N) da

315 fIK' = 32n .'7 K (N) !F(N) da.

Then, define (x, /3, A' and B' as linear combinations of u, v, U' and V' :

(X = ~(v-u), /3 = ~(3u-v)

A' = V' - U', B' = ~(3U' - 2V').

(25a)

(25b)

(25c)

(26a)

(26b)

In fact, eqns (26a) and (26b) correspond to the inverses ofeqns (23c) and (23d). Substituting
eqns (26a), (26b) and (25c) into eqn (22) results in

IK = ~(v-u)I®I+~(3u-v)(I<8lI+I®I)+I® (V'-U')

+ (V' - U') ® 1+ W<8l (3U' - 2V') + (3U' - 2V') <8l1

+1 ® (3U' -2V') + (3U' -2V') ® I] + K, (27)

so that conditions (i) and (ii) are satisfied.
Uniqueness (Ladeveze, 1983): suppose there exist two fourth-order tensors IK and W

with minor and major symmetries such that the conditions (i) and (ii) are verified. Setting
M = IK- W, then we have, for every N EJV,
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We shall show that these two conditions imply that M = Q]), i.e. uniqueness. To do this, we
proceed in two steps.

Step 1. Since M has minor and major symmetries, the second-order tensor T:= MI is
symmetric and the condition (a) is equivalent to

(a') T:N = 0

for every N E 5. According to the spectral theorem, any second-order symmetric tensor X
admits the following decomposition:

where N, = ", ® ", (i = 1,2,3), ", being the unit eigenvector associated with the eigenvalue
x, of X, such that ",'"j = 0 (i #- j). Taking (a') into account while using (c), we deduce that
T : X = 0 for any second order symmetric tensor X and this means that

(a") MI = T = o.

Step 2. Let "h "2 and "3 be three orthonormal vectors. Then,

with N, = ", ®", (i = 1,2,3). Due to the conditions (b), (d) and (a"),

i.e.

Similarly, we can write

Connecting (e), (f) and (g) leads to N,: MNj = 0 (i,j = 1,2,3; i #- j). More generally,

(h) N,: MNj = 0 with i,j = 1,2,3,

since, according to (b), N,:MNj = 0 (i,j = 1,2,3; i = j). It follows immediately from (c)
and (h) that, for any second-order tensor X,

X:MX = O.

With the major symmetry of M, this condition implies that M = QJl. •
From an experimental point of view, Theorem 2 tells us that pure elongation tests are

sufficient to completely identify the elasticity tensor. In addition, it is clear from eqns
(24a) and (24b) that a first-order polynomial in N is general enough to approximate
experimentally obtained data of K(N), while a second-order polynomial in N is generally
needed for approximating those of K (N). When experimental data are limited, eqns (24a)
and (24b) also provide the possibility of neglecting only the terms related to higher tensor
spherical harmonics. For example, we can use K(N) = u+U' :N and K(N) = v for averaging
certain limited data from pure elongation tests of an orthotropic elastic material, optimize
the coefficients u, v and U' with respect to the norm L2(.'7), and then introduce their
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optimized values into egn (27) to get an orthotropic elasticity tensor IK depending only on
four constants. Such a data-averaging method seems to be able to overcome the difficulties
arising from the redundancy of experimental data (see Grediac et al., 1993).

Alternatively, if choosing the stress tensor S to be a controlled (or independent)
variable, we can correspondingly define the Young and bulk modulus o.d.f.s by considering
pure traction tests instead of pure elongation tests. The results established in this section
remain usable in the dual sense. From an experimental point of view, this approach is more
advantageous, since a pure traction test is much easier to achieve than a pure elongation
test. Nevertheless, when a damaged elastic material which may be softening is concerned,
the strain tensor E must be taken as the control variable (see He and Curnier, 1994).

5. DAMAGE VARIABLES AND DAMAGED ELASTIC BEHAVIOR

We now proceed to develop a systematic approach to damaged elastic stress-strain
relations. The results obtained in the preceding sections will be employed in both undamaged
and damaged cases, provided the necessary conditions are satisfied. A word about the
notation is useful: the subscript 0 will refer to the undamaged state while - will be assigned
to a damage state of the material.

5.1. A preliminary definition
Consider a material macroscopic scalar property w, whose degradation can be used as

a macroscopic indicator of the underlying microstructural damage processes (Lemaitre and
Dufailly, 1987). We denote by Wo its value at the undamaged (or initial) state and by OJ its
value at some later damaged state of the material. Both Wo and OJ vary generally with the
orientation specified by D. Let two functions Wo: g' ->:JJl and w: .Cfl -> :JJl be such as to
describe the directional dependences of W o and OJ; that is, Wo = Wo(D) and OJ = ~V (D). Then,
the function 0: g' -> :JJl, defined by

Wo (D) - ~V(D)
O(D):=---­

Wo(D)

W(D)
l-~­

Wo(D) ,
(28)

can be taken as a measure of the degree of material damage in the direction D and will be
referred to as a damage o.dJ.

Invoking the same argument as used for writing the invariance condition, egn (3), we
have

WO(D) = woe -D), ~V (D) = W(-D) (29)

for DE g'. It follows from Lemma I and egn (29) that there exist two functions ~vo :.K -> :JJl
and ~V : Ai" -> :JJl such that

for all DE g'. Introducing egn (30) into egn (28) yields

~ ~V (N)
0(0) = O(N) := I - -,­

wo(N),

where Q: .,1/ -> :J1l will also be called a damage o.d.f.

(30)

(31 )

5.2. The principal hypothesis and damage variables
In the following we shall be concerned only with the influence of damage on the

material elastic response. The undamaged material behavior is assumed to be linear and
hyperelastic:
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(32)

where lKo, the undamaged elasticity tensor, is positive definite and possesses minor and
major symmetries. Apart from eqn (32), the principal hypothesis we shall make is that the
damaged elastic behavior at a fixed damage state is also linear and hyperelastic:

(33)

where the damaged elasticity tensor IK, a function of the damage variables to be chosen, is
also positive definite and has minor and major symmetries. These hypotheses, general
enough for many engineering problems, are found in almost all existing elastic damage
theories.

Next we introduce the undamaged and damaged elongation and bulk modulus o.d.f.s
as follows:

(34)

K(N) = N: IKN, K(N) = I: IKN. (35)

According to Theorem 2, lKois uniquely determined by the knowledge of Ko(N) and Ko(N),
and IK by that of K(N) and K(N). If the material elasticity degradation is considered as
the macroscopic indicator of the underlying microstructural damage processes, then the
following two damage o.dJ.s

, Ko(N)-K(N) K(N)
d(N):= Ko(N) = 1- Ko(N) ,

1}(N): Ko(N) - K(N) = 1- K(N)
Ko(N) Ko(N)

(36)

(37)

fully characterize the damage state of the material. The fact that two scalar-valued functions
defined on ,'/ are needed for completely describing the damage state of an elastic linear
damageable material was first indicated by Ladeveze (1983).

In order to get a finite characterization of a given damage state, we assume d(N) and
1}(N) to be square-integrable and expand them in the convergent Fourier series:

deN) = b+D':F(N)+[j)':: !F(N) + "',

q(N) = h+H': F(N) + 1Hl':: !F(N) + ... ,

(38)

(39)

where band h are two scalars, D' and H' two S.t. second-order tensors, and [j)' and IHl'two
c.s.t. fourth-order tensors. These expansion coefficients can naturally be taken as damage
variables. Hence, a finite description of the damage state amounts to using a limited number
of expansion coefficients, for example, {b, D', [j)'} and {h, H'}, as the damage variables on
which IK depends.

5.3. Damaged elasticity tensor
Let the undamaged elasticity tensor lKo be given. Following the procedure presented

in Section 4.2, we have the irreducible decomposition of lKo:

lKo = c(o I ® I + Po (I @ 1+ I ® I) + I ® A~ + A~ ® 1+1 ~ B~ + B~ @ 1

+ 1 ® B~ + B~ ® 1+ IK~ (40)

and the Fourier series expansions of Ko(N) and Ko(N) :
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K o(N) = Uo + U~ :N + N : IK~N

Ko(N) = Vo + V~: N,

Vo = 301:0 + 2fJo

u~ = 2A~+4B~, V~ = 3A~+4B~.

(4Ia)

(41 b)

(4Ic)

(4Id)

Expressions similar to eqns (40) and (41) exist for IK. However, for the purpose of this
paragraph it suffices to write

K(N) = u+U':N+N: IK'N

K(N) = v+ V': N.

On the other hand, it is immediate from definitions (36) and (37) that

K(N) = K(N), K(N) = K(N)

with

K(N):= [1-d(N)] Ko(N), K(N):= [l-~(N)]Ko(N).

Introducingeqns (38), (39), (4Ia) and (4Ib) into eqn (44), yields

(42a)

(42b)

(43)

(44)

K(N) = (1- b)uo + [(1- b)U~ - uoD'] : F(N) + [(1- b) IK~ - Uo[]I'] :: !F(N)

- (D' (8) U~):: (F(N)®F(N)) - (IK~®D') ::: (!F(N) (8) F(N)

-([]I' ® U~) ::: (!F(N) ® F(N»- ([]I'®IK~) :::: (!F(N) ® !F(N» + ... (45a)

K(N) = (1- h)vo + [(1 - h)V~ -voH'] :F(N) -voW:: !F(N)

- (H' (8) V~):: (F(N) ® F(N» - (W ® V~) ::: (!F(N) ® F(N» + ... (45b)

By eqns (43) and (42),

u+U':F(N)+IK':: !F(N) = K(N)

v+ V': F(N) = K(N).

(46)

(47)

Then, as a result of the orthogonality properties, eqn (9), of {I, F(N), !F(N), ...}, we have

u = ;nLK(N) da, U' = ~~LK(N) F(N) da

v = ;nLK(N) da, V' = ~~LK(N) F(N) da

IK'= ~~~LK(N)!F(N)da, (48)

in which the expressions of K(N) and K(N) are given by eqn (45). When the undamaged
elastic behavior, i.e. {uo, U~, IK~} and {vo, V~}, is specified and a choice of a finite number
of damage variables among {b, h, D', H', []I', IHI', ...} is made, the integrals of eqn (48) can
explicitly be carried out. Several important examples will be treated in Sections 6 and 7.

We are now in a position to give the general expression of the damaged elasticity
tensor. Indeed, following Theorem 2, a unique IK is associated with K(N) and K(N) and
has the form
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[K = ~(v-a) I ® I+~(3a-v)(I ~ 1+1 ® 1)+1 ® (V'- iT')

+ (V' - iT') ® I + HI ~ (3U' - 2V') + (30' - 2V') ~ I

+1 ® (30'-2V') +(30' -2V') ®I] + ~', (49)

which comes from the application of formula (27) to the damaged case. Recall that a, v,
0', V' and ~', calculated by eqn (48), depend on the undamaged elastic properties
{uo, U~, [K~} and {vo, V~} and on the damage variables {b, h, D', H', [D', IHI', ...}.

The damaged elastic response in the most widely used theories of continuum damage
mechanics (Lemaitre and Chaboche, 1978; Cordebois and Sidoroff, 1979; Lemaitre and
Chaboche, 1985; Simo and lu, 1987; Chow and Wang, 1987) is formulated throub~ the
concept of effective stress and the hypothesis of strain or stress-energy equivalence. As can
be seen, our approach is quite different from the preceding ones; it starts from the definition
of two natural damage o.d.f.s and then resorts to Theorem 2 for obtaining the damaged
elasticity tensor. Thus, certain drawbacks arising from the lack of uniformity and rigor (see
Rabier, 1989, for details) of the existing elastic damage theories are remedied.

5.4. Restrictions on the choice ofdamage variables
It is important to remark that, for eqns (46) and (47) to hold, certain restrictive

conditions must be verified by the damage variables. As a matter of fact, eqns (46) and (47)
imply that

LK (N) IFmeN) da = ®m, (m = 6,8,10, )

LK(N) IFmeN) da = ®m, (m = 4,6,8, ),

(50a)

(50b)

where IFmeN) denotes the mth-order tensor spherical harmonic (see e.g. Kanatani, 1984 for
its exact form) and iIDm the mth-order zero tensor. Inserting eqn (45) into eqn (50) gives the
conditions to be satisfied by {b, D', [D', ...} and {h, H', IHI', ...}. Such conditions should not
surprise us, since they result from the principal hypothesis, eqn (33), that the stress-strain
relation at a fixed damage state is linear.

If the considered material is initially isotropic, then eqns (4Ia) and (4Ib) become very
simple :

(51)

and eqns (45a) and (45b) reduce to

K(N) = uoO-b) -uoD': F(N) -uo[D':: IF(N) + ... ,

K(N) = uoO-h) -uoH': F(N) + ....

Then it is not difficult to show that, in such a case, eqns (50a) and (50b) are satisfied if and
only if

K(N) = uo(l-b) -uoD': F(N) - Uo [D' :: IF(N),

K(N) = uo(l-h)-uoH':F(N).

(52a)

(52b)

This implies that, within the framework consistent with hypothesis (33), the most general
forms of deN) and if(N) are
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deN) = b+D/ :F(N) + II])':: !F(N),

q(N) = h+H' :F(N).

(53a)

(53b)

In other words, the set {b, h, D/, H', 1Di /} (or a fourth-order tensor with the minor and major
symmetries) constitutes the most general choice of damage variables. This conclusion is
not surprising and corresponds to our intuition.

However, when the material is initially anisotropic, it is much more difficult to choose,
without loss of generality, damage variables such as to verify conditions (50). Suppose a
choice of damage variables, guided by some available experimental observations and analy­
ses, is made and conditions (50a) and (50b) are not exactly satisfied. If the values of the
two i,~~egrals

CK = LIK (N) - u-V': F(N) - ui/:: !F(NW da

CK = r IK(N)-v- V': NI 2 daJ9'

in which {a, V', ui /} and {v, V'} are obtained by eqn (48), are such that

(54a)

(54b)

(55)

then conditions (50a) and (50b) are said to be approximately satisfied in the mean. In this
sense, we write

K(N) ~ a+V': F(N) + ui' :: !F(N)

K(N) .~ v+ V': F(N),

(56a)

(56b)

and replace = by ~ in formula (49). We shall, in Section 7, establish a damaged elastic
stress-strain relation for unidirectional fibre-reinforced composites in this way.

6. APPLICATION TO INITIALLY ISOTROPIC MATERIALS

We recall that the undamaged elongation and bulk modulus o.d.f.s Ko(N) and Ko(N)
for initially isotropic materials are specified by eqn (51), where, if necessary, Uo and Vo can
be expressed in terms of Young's modulus Eo and Poisson's ration Vo by means of eqn (19).
In addition, the general forms of K(N), K(N), deN) and i/(N) are given in eqns (52a)-(53b).

By applying eqn (48) to eqn (52), we get

a= uo(l-(j), V' = -uOD/, ui' = -uOIDi / ;

V = vo(l-h), V' = -voH'.

(57a)

(57b)

These expressions can directly be obtained by comparing eqns (52a) and (52b), respectively,
with eqns (46) and (47). Then, introducing eqn (57) into eqn (49) yields the general
expression of ui in terms of the undamaged isotropic elastic constants {uo, vo} and the
damage variables {b, h, D/, H', 1Di /}.

The aforementioned formulation is too general to be practicable. Indeed, given Uo and
Vo, it amounts to choosing the fourth-order elasticity tensor IK as the internal variable and
hence obliges us to establish the evolution law for IK, which is tremendously difficult. A
useful elastic damage model should be able to reflect the main effects of damage on the
elastic properties with a reasonable number of internal variables. In fact, the approach
developed in Section 5 is particularly adapted to such a demand, since it presents the
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possibility of neglecting, in eqns (53a) and (53b) or more generally in eqns (38) and (39),
the terms which are related to high-order spherical harmonics and thus represent low-order
effects of damage on the elongation and bulk moduli. We now deal with two important
examples.

6.1. Isotropic damage
If the following invariance conditions

are satisfied, then the damage is isotropic and eqns (53a) and (53b) reduce to

d(N) = b, Ij(N) = h,

(58)

(59)

which corresponds to the zero-order damage kinematics of Ladeveze (1983, 1993). In
agreement with eqn (59),

By eqn (49), we get

K(N) = 11 = (1-b)uo, K(N) = v= (l-h)vo. (60)

iK = H(1-h)vo -(1-b)uo]I ® 1+ H3(1-b)Uo -(1-h)vo](I 0 1+1 ® I). (61)

As the damaged elastic material remains isotropic, we can use formula (19) to express
K(N) and K(N) in terms of the corresponding damaged Young's modulus E and Poisson's
ratio V,

_ (l-v)£ £
K(N) = (l+v)(1-2v)' K(N) = 1-2v

and to write eqn (60) in the following equivalent forms:

(62)

(63a)

(63b)

The two latter expressions, which relate E and v to Eo and Vo through band h, are not
simple. This is due to the fact that the strain tensor is chosen to be the controlled variable
and that pure elongation tests, instead of pure traction ones, are privileged. Such a strain­
controlled damage formulation is more advantageous than the stress-controlled one, since
it is more convenient for the variational formulation of a boundary value problem and it
describes a wider class of materials when damage evolution equations are established within
the framework of generalized standard materials (He and Curnier, 1994).

It is seen from eqn (59) that a general description of isotropic elastic damage necessi­
tates two scalar internal variables instead of one as in many isotropic damage theories. This
has been pointed out by Ladeveze (1983), Rabier (1989) and Ju (1990).

6.2. Orthotropic damage
Damage processes are generally anisotropic and often exhibit privileged directions. In

the case of initially isotropic materials subjected to proportional loading, it is reasonable to
make the assumption that damage is orthotropic with respect to the principal axes of the
strain tensor. Under this hypothesis, we now apply the developed approach to the con­
struction of two orthotropic damage models.
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Let D and H be two second-order tensors which are symmetric and positive semi­
definite. Suppose the damage o.d.f.s deN) and fi(N) are such that

with

deN) = J+D':F(N),

q(N) = h + H' :F(N),

J=~trD, D'=D-JI; h=~trH, H'=H-hl.

(64a)

(64b)

(64c)

This assumption corresponds to the first-order damage kinematics of Ladeveze (1983,
1993). Comparing eqn (64a) with eqn (53a), we see that only the term related to the fourth­
order harmonic !F(N) is neglected. With eqn (64), K(N) and K(N) given by eqns (52a) and
(52b) become

K(N)=ii+U':F(N), il=(l-J)uo, U'=-uoD'

K(N) = v+ \7': F(N), v = (1-h)vo, \7' = -uoH'.

By eqn (49), we obtain the associated damaged elasticity tensor

(65a)

(65b)

iR = H(1-h)vo - (1-J)uo]1 ® I+H3(1-J)uo - (1-h)vo](1 0 1+1 ® I)

- uol (8) (H' - D') - uo(H' - D') ® 1- uo [I (8) (3D' - 2H')4 -

+(3D' -2H') 0 1+1 ® (3D' -2H')+(3D' -2H) ® I]. (66)

In general, this tensor is triclinic or fully anisotropic. A necessary and sufficient condition
for it to be orthotropic is that the two damage tensors D and H be commutative:

or equivalently coaxial:

OH=HO

D = D1d l (8) d l +D2 d2 ® d2 +D3 d3 ® d3

H = Hid) (8) d l +H2d2 (8) d2 +H3d 3 ® d3 ,

(67)

(68a)

(68b)

where Db D 2 and D 3 are the eigenvalues ofD, H), H 2 and H 3 the eigenvalues ofH, and dl ,

d2 and d3, three associated orthonormal eigenvectors of 0 (or H). Under the condition (67)
or (68), 0{ becomes orthotropic with respect to the three axes defined by db d2 and d3•

It is useful to write iR, given by eqn (66) together with eqn (68), in matrix form. First,
let us associate with {db d2 , d3} the orthonormal basis

1
D 4 = .j2(d2 ®d 3 +d3 ®d2 )

1
0 5 = .j2(d3 ®d l +d l ®d 3 )

I
0 6 = .j2(d l ®d 2 +d2 (8)dd (69)

for the space :T of three-dimensional symmetric tensors. Then, the strain tensor E, the
stress tensor S and the damaged elasticity tensor iR can be written as
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6

E= I EiD h
i= 1

6

s= I5iD i ,

i= I

6

IK = L KUDi®Dj ,
i.j= 1

(70)

where the components Ei> 5 i and Kij are calculated by means of Ei = E: D i, Si = S: D, and
Kij = D i : IKDj . Next the aforementioned orthotropic damaged stress-strain relation has the
following matrix form:

5] K II K]2 KI3 EI

52 K21 K22 K23 E2

53 K31 K32 K 33 E3
(71)

54 K44 E4

55 K55 E5

56 K66 E6

with

K I1 = (1-D ,)uo, K 22 = (1-DJuo, K33 = (1-D 3)uo
- ] 1K44 = 2(3+D1-2D2-2D3)uo -2(1 +H1-H2-H3)vO

K 55 = ~(3 - 2D1+D2- 2D3)uO - W- H] +H 2- H 3)vo

- 1 IK66 = 2(3 - 2D] - 2D2+D3)uO - 2(1- HI - H 2+H 3 )vo

- - I IK I2 = K 21 = 2(1-H] -H2+H3)vO - (;(3+D] +D2-5D3)uo

- - 1 IK I3 = K 31 = 2(1-H1+H2-H3)vO - (;(3+D 1-5D2+D3)uo

- - ] 1K23 = K32 = 2(1 + H] - H 2- H 3)vo- (;(3 - 5D] +D2+D3)uo. (72)

It is seen that, given Uo and Vo, the matrix of IK contains only six independent par­
ameters: three eigenvalues Db D2and D3of D plus three eigenvalues H b H2 and H3of H.
Recall that a general orthotropic elasticity matrix depends on nine parameters. Hence, the
stress-strain relation (72) is a particular orthotropic one. The restrictions displayed by eqn
(72) will be examined in a future paper.

The most widely used orthotropic damage model is probably that proposed by Cord­
ebois and Sidoroff (1979), in which the orthotropic damaged strain~stressrelation depends
only on three parameters. Compared with eqn (72), their model exhibits more restrictive
limitations on the damaged Poisson's ratios.

It is interesting to simplify the previously established orthotropic damage model by
setting

H = hI,

which is equivalent to assuming Ij(N) to be isotropic, i.e.

Ij(N) = h.

(73)

(74)

This simplification is justified by the observation that, in the general expressions of eqn
(53), a second-order polynomial in N is needed for characterizing deN), while a first-order
polynomial in N is sufficient for describing i}(N). In this sense, the effect of damage on the
elongation modulus is more anisotropic than on the bulk modulus, and eqn (74) is "con­
sistent" with eqn (64).

The simplified orthotropic damage model depends only on four parameters: h, D1, D2

and D3• More precisely, eqns (71) and (72) remain valid, provided the last six relations of
(72) are replaced by
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- I IK 44 = 2(3+D I -2D2-2D3)uo- 2(1-h)vo

- I IK 55 = 2(3-2D I+D2-2D3)uo -2(1-h)vo

- I IK 66 = 2(3-2D I -2D2+ D 3)uo - 2(1-h)vo

- - 1 1K I2 =K21 = 2(l-h)vo-;;(3+D 1 +D2-5D3)uo

- - I IK I3 =K31 =2(l-h)vo-;;(3+D l -5D2+D3)uo

- - 1 IK 23 = K 32 = 2(1-h)vo-;;(3-5D 1 +D2+D3)uo· (75)

Clearly, this orthotropic damage model is less general. But it has the advantage that
condition (67) is trivially verified by eqn (73), so that eqn (67) imposes no restrictive
condition on the evolution equations for D and H.

7. APPLICATION TO UNIDIRECTIONAL FIBRE-REINFORCED COMPOSITES

The approach developed in Sections 3~5 is also applicable to initially anisotropic
materials. To illustrate this, we treat below the problem of formulating the damaged elastic
behavior of unidirectional fibre-reinforced composites.

7.1. Undamaged elasticity tensor and its irreducible decomposition
In many practical cases, unidirectional fibre-reinforced composites can be considered

as being transversely isotropic at a macroscopic scale. Let the unit vector m specify the fibre
axis. Then M:= m ® m, called the structural tensor, is such that

'§:= {QE(!)(3) I QMQT = M}

corresponds to the material symmetry group.
The undamaged behavior is assumed to be linear and hyperelastic, so that the undam­

aged stress~strain relation is given by eqn (32). Due to the introduction of M, the undam­
aged elasticity tensor 1K0 can be written in the following invariant form

1K 0 = all ® l+a2(1@1+1®1)+a3M®M+a4(I®M+M®I)

+a5(I@M+M@ 1+1 0 M+I ® M), (76)

where a j (i = 1, ... ,5) are five material constants.
The irreducible decomposition of the preceding transversely isotropic elasticity tensor

1K0 is given by eqn (40) with

ao = ~(l5al +a3 + lOa4), f30 = ~(30a2 +2a3+20a5 )

A~ = - :;T(a3+ 7a4)1 + ~(a3 + 7a4)M

B~ = -:;T(a3+7a5)I+~(a3+7a5)M

(77a)

(77b)

(77c)

IK~ = aJlM®M- W®M+M®I+I@M+M@I+I®M+M0I)

+~(I®I+I®I+I01)1. (77d)

How to obtain these expressions from eqn (76) is detailed in Appendix 1. It is worth noting
that IK~ depends only on one material constant a3 and moreover that

(78)

where !F(.) is the fourth-order tensor spherical harmonic function defined by eqn (8b).
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The expansions (4la) and (42b) remain valid for the undamaged elongation and bulk
modulus o.d.f.s Ko(N) and Ko(N) associated with lKo, on condition that

2 I 2 4
Uo = CX I + CX2 + sCi, + 3CX4 + 30:5

Vo = 3cxI + 2cx 2 + ~CX3 + 2CX4 + ~CXs

U~ = -nCX3+~CX4+~cxs)I+(~cx,+2cx4+4cxs)M

V ~ = - (~CX, + CX4 + ~CXs)I+ (CX3 + 3CX4 + 4cx s) M,

which are calculated by means of eqns (41 c) and (41 d).

(79a)

(79b)

(79c)

(79d)

(80a)

7.2. Damage variables and damaged elasticity tensor
It was experimentally observed that, in a large number ofunidirectional fibre-reinforced

composites subjected to monotone or cyclic loading, typical damage systems consist of
microdefects that are either parallel or perpendicular to the fibre axis (Talreja, 1985, 1991 ;
He and Sidoroff, 1989). An analysis based on this observation and taking the initial material
symmetry-transverse isotropy-into account led us to conclude that, in the general case,
a damaged unidirectional fibre-reinforced composite is monoclinical with respect to the plane
normal to thefibre axis (He and Sidoroff, 1989). In other words, the damaged properties of
a unidirectional fibre composite are invariant under any mirror reflection on the plane
perpendicular to m.

With the previous symmetry condition in mind, we introduce two second-order damage
tensors D and H, which are symmetric positive semi-definite and admit the following
spectral decompositions

D = DIm ® m+D2d2 ® d2 +D,d3 ® d3 ,

H = H l m®m+H2hz ®h2 +H3 h, ®h3

= HIm ® m+H22 d2 ® d2 +Hnd, ® d, +H23 d2 ® d3 +H,zd3® d2 , (80b)

where D" D2 and D, are the eigenvalues of D, HI, Hz and H 3 are the eigenvalues of H, and
both {m, d2, d3} and {m, h2, h3} form three-dimensional orthonormal bases. Then, the
damage o.d.f.s d(N) and ij(N) are assumed to be such that

in which

d(N) = o+D/:F(N)

ij(N) = h+H': F(N)

b = ~ tr D, h = ~ tr H, D' = D - bI, HI = H - hI.

(8Ia)

(81 b)

(81c)

Geometrically, either d(N) or ~(N) describes an ellipsoid with one principal axis parallel to
m, when N E JV varies and provided the eigenvalues of D and H are all positive.

In accordance with eqns (80a) and (80b), the general expressions (45a) and (45b)
reduce to

K(N) = (1- o)uo + [(1- b)U~ - UOD/] :F(N) + (1- b)lK~ :: !F(N)

- (D' ® U~):: (F(N) ® F(N)) - (IK~ ® D') ::: (!F(N) ® F(N)), (82a)

K(N) = (1-h)vo + [(l-h)V~ -voH'] :F(N) - (H' ® V~):: (F(N) ® F(N)). (82b)
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In the sense of egn (55), these two functions can be approximated in the following way:

K(N) ~ u+O': F(N) + IK':: IF(N)

K(N) ~ V+ V': F(N),

where the coefficients are determined by applying formula (48) :

u= (1-b)Uo-~D':U~, V= (1-h)vo-~H':V~

"0' = (l-b)U' - D'+~t (D'U')I-~(D'U' +U'D')-~IK'D'o Uo 21 r 0 7 0 0 21 0

V' = (l-h)V' - 1 H'+~t (H'V')I-~(H'V' +V'H')o L 0 21 r 0 7 0 0

(83a)

(83b)

(84a)

(84b)

(84c)

IK' = (l-b)lK~ - 1~5 tr (D'U~) (I ® I+I@ 1+1 ® I)

- ~(D' ® U~ + U~ ® D' + D' @ U~ + U~ @ D' + D' ® U~ + U~ ® D')

+ MI ® (D'U~ + U~D/) + (D'U~ + U~D') ® 1+ 1 @ (D'U~ + U~D')

+ (D'U~) + U~D') @ 1+ 1 ® (D/U~ + U~D') + (D'U~ + U~D') ® I]

+ ~[I ® (IK~D') + (IK~D') ® 1+ 1 @ (IK~D') + (IK~D') @ 1

+ 1 ® (IK~D') + (IK~D') ® I]

- TJ[(I @ D')IK~ + IK~(I @ D') + (D/ @ I)IK~ + IK~(D' @ I)]. (84d)

The main steps towards getting these expressions are explained in Appendix 2.
If egns (84a)-(84d) are substituted into egn (49), we obtain the damaged elasticity

tensor IK in its invariant form, which is approximately associated with ]((N) and K(N) in
the sense of egn (58). As in the case of initially isotropic materials, it is useful and otherwise
more convenient to write IK in matrix form. For doing so, we employ egns (69) and (70)
with d1 = m. Then, the damaged stress-strain relation takes the following matrix form:

Sl ](11 ](12 ](13 ](14 £1

S2 ](21 ](22 ](23 ](24 £2

S3 ](31 ](32 ](33 ](34 £3
(85)

S4 ](41 ](42 ](43 ](44 £4

S5 ](55 ](56 £5

S6 ](65 ](66 £6

with

- IK 22 = (1- D2)(tX1+2tX2 ) - 231(5D 1 - 6D 2+D3)tX 3

- I
K 33 = (1-D3)(tX l + 2tX2)- 231(5D 1+D2-6D3)tX 3

- 1K 44 = 2(D 1-2D2-2D3-3HI+3H22 +3H33 )tX l

+ (2+D 1-2D2-2D3-HI +H22 +H33)tX2

( 65 D 6 6 33 I I
+ 154 1+ 154D2 + 154D3 -70HI -70H22 -70H33)tX3

(D 67H 16H 16+ 1- 35 1+35 22 + 35H33)tX4

+ (2D 1- f'sH I - fsH22 - fs H 33) tX 5
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KS5 = -~(2DI -D2+2D3-3H1 +3H22 -3H33 )CX,

+(2-2D] +D2-2D3+H1-H22 +H33)CX2

(
40 ] 36 27 H I H 9 H )-I54D'+I54D2+IS4D3-70 1+70 22-70 33 CX 3

( D S8 19 H 3' H )- D 1 + 3 - 35H1 + 35 22 - 35 33 CX4

+(2-2D 1 -2D3+ ~HI -isH 22 + HH33 )CX 5

K66 = -~(2Dl +2D2-D3-3H]-3H22+3H33)CXl

+(2-2D1-2D2+D3+H1 +H22 -H33 )CX 2

( 40 D 36 D ] D 27 H 9 H ] H )- 154 ,+ 154 2 + 154 3 - 70 1-70 22 + 70 33 CX3

(D D S8H 3'H 19 H )
- 1 + 2 - 35 ,- 35 n + 35 33 CX4

(2 2D 2D 54H 18H 3 H )+ - , - 2 + 35 1+ 35 22 - 35 33 CX5

_ 1
K 12 = fi(2+D] +D2-D3-3HI-3Hn+3H33)CX1

+fi (D 1 + D2- D3- HI - Hn + H 33 )CX 2

1 (21S 1 15 27 9 H 1 H )
+ fi 23ID'+231D2+23ID3-35H'-35 n+35 33 CX3

,1,2 (1 58 31 '9)+V£. +DI-35H1-35Hn+35H33 CX4

+ fi (D] - ~HI - HH22 + isH 33) CX 5

_ 1
K I3 = fi(2+D 1 -D2+D3-3H, +3H22 -3H33 )CX]

+fi(D1-D2+D3-H I +Hn -H33 )CX 2

1 (21SD]5 1 27 , H 9 H )
+ fi ill '+ill D2 +illD3-35H '+35 n-35 33 CX3

,1,2(1 58 19 3')+V£. +DI-35Hl+35H22-35H33 CX4

+/2(D 1 - ~HI + lSH22 - HH33)CX5

1(14 = -fiH23 (3cx 1 +2CX2+~CX3+*CX4+~CXS)

_ 1
K 23 = fi(2-D, +D2+D3+3H, -3Hn -3H33 )CX,

-fi(D] -D2-D3-H] +H22 +H33)CX2

1 (20S D 13 13 33 1 ')- fi ill l+illD2+illD3-35HI-35H22-y,H33 CX 3

,1,2 (D 67 16 16-V£. 1-35H , +35H22-35H33)CX4

-fi(2D, - f'sH I -1sHn -1sH d cx s

1(24 = 1(34 = 0

I(S6 = fi H 23 (~cx] + CX 2 + T4 CX 3 + %CX 4 + ~CX5)'
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In the above expressions, HI. H 22 , H33 and H 23 (or H 32) denote the non-zero components
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of H relative to the basis {m, d2, d3}, and appearance of J2 is due to the use of eqns (69)
and (70).

It is seen from eqn (35) that iR. is monoclinic with respect to the fibre axis specified by
m. This arises from eqns (80) and (81) and can be deduced already from eqns (82a) and
(82b). Indeed, noting that

is a monoclinic symmetry group, then it is not difficult to verify that, with eqns (80), (82a)
and (82b),

(87)

Nevertheless, as the five undamaged constants:x], ... ,Ct.s are given, iR. depends only on seven
independent parameters {D], Db D 3 ; Hj, H 22 , H 33 , H 23 } and the monoclinic symmetry in
question is not the general one, where iR. should depend on 13 independent parameters.

In addition, when DH = HD or equivalently when H 23 = 0, H 22 = H 2 and H 33 = H 3 in
eqn (85), iR. becomes an orthotropic elasticity tensor containing six independent parameters.
The resulting model is useful when loading is such that the strain components £2, £3 and
£4 are proportional. For instance, if £3 = £4 = £s = 0, this situation occurs and the non­
zero strain components are all in the plane m-d2. The stress-strain relation (85) then reduces
to the following two-dimensional one:

which is orthotropic with respect to the axes defined by m and d2•

8. CONCLUDING REMARKS

In the most widely used continuum damage mechanics theories, the damaged elastic
response is formulated via the concept ofeffective stress (strain) and the hypothesis of strain
(stress) or elastic energy equivalence. Such an approach presents two major shortcomings:

(i) The choice of damage variables is to a large extent left arbitrary, both regarding
their nature (scalar, vector, second-order tensor, etc.) and their number. There is no doubt
that the lack of a mathematical support in guiding that choice is the principal source of
this arbitrariness.

(ii) The degree of approximation with which the damaged stress-strain relation is
formulated is often uncontrolled and so fuzzy. The main reason for this fuzziness is that
the terms reflecting the same degree effect of damage to be retained in the expression of the
damaged stress-strain relation are not well identified.

In this paper, a different approach has been developed, which remedies the foregoing
shortcomings under the condition that the damaged elastic response at a given damage
state can be assumed to be linear and hyperelastic.

While the objective of the present work was to develop a more uniform and rigorous
approach to damaged elastic stress-strain relations, the results obtained in Sections 3 and
4 have wider scope. For example, Theorem 2 is useful for approximating and identifying
the elastic properties of anisotropic materials.
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In the near future, the authors intend to
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• formulate the evolution equations for the damage variables within the framework of
generalized standard materials (see e.g. Germain et al., 1983), so as to complete the
developed approach;

• confront the models established in Sections 6 and 7 with the available experimental and
micromechanical results, examine their limitations and then integrate them into a code
of finite elements;

• compare the proposed approach with that based on the theory of tensor function rep­
resentations;

• study the possibility of extending our approach so as to take the unilateral effect of
damage into account.
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APPENDIX I : IRREDUCIBLE DECOMPOSITION OF THE TRANSVERSELY ISOTROPIC
ELASTICITY TENSOR

We here employ a procedure suggested by Cowin (1989) for making irreducible decomposition of the elasticity
lKo in eqn (76).
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Two symmetric second-order tensors Yo and Zo, defined as

can directly be calculated from 1K0 • After introducing the invariant expression (76) of the transversely isotropic
elasticity tensor 1K0 into the above definitions, a simple calculation gives

Yo = (3iX j +2iX2 +i(4)I+(iX3 +3iX4 + 4iXs)M

Zo = (iX, +4iX, +iXs)I+(iX, + 2iX 4 +5iXs)M.

The corresponding deviatoric tensors are

Y~ = -~(iX3+3iX4+4iXs)I+(~,+3~4+4iXs)M

Z~ = ~~(~3+2~4+5~s)I+(iX3+2iX4+5iXs)M.

Then, using formulae (4.3) and (4.4) of Cowin [1989], we have

~o = T,(2 trYo-trZo) = T,( 15iX l +iXJ+ IOi(4)

Po =~(3trZo-trYo) =~(30iX2+2iX,+20iXs)

A~ = ~(5Y~ -4Z~) = - f,(iX3 + 7i(4)1 + ~(iX3 + 7i(4)M

B~ = ~(3Z~ - 2Y~) = - f,(iX, + 7iXs)I + ~(iXJ + 7~s)M

IK~ = 1K 0 - hUg) 1+ Po(l §> 1+10 [) +1 0 A~ +A~ 01+1 §> B~ +B~ §> [+1 ® B~ +B() ® I]

=iX3[M0M~~(I0M+M0I+I§>M+M§>I+I ® M+M 0 I)+~(101+[§>1+101)].

APPENDIX 2: CALCULATION OF THE EXPANSION COEFFICIENTS ASSOCIATED WITH
THE FUNDAMENTAL SPHERICAL HARMONICS

The expressions of K(N) and K(N) are given by eqns (82a) and (82b). In the following, we present the key
formulae and steps needed for carrying out the integrals of eqn (48) and thus obtaining the expansion coefficients
{a, 0', ~'} and {v, V'} of eqns (83a) and (83b).

First, recall the following recurrence formulae for integrals over the unit sphere :J' (see e.g. Kanatani, 1984) :

l f If 1- If 1-4 . da = I, -. n,n,da = ,iJ", -4 . n,n,nkn,da = 5J 'jk'
n Y' 4n v' n "

where (ju is the Kronecker delta and

Jijklmn = ; (O/iJkblln +(jikJjlmn +{)i/Jjkmll + (jimJ,'kfn + +OinJjklm)

Jljklmnpq = ~ (buJkhrltlpq + i5 i1..-J;lmnpq + OdJjkmnpq + bimJjklnpq + binJ,'klmpq + oipJjklmnq + {)iqJ,;kll1mp)

Ji;klmnPlffS = ~ (bijJklmnpqrs + bikJjlmnpqr.\. + (j i/Jjkmnpqrs +birnJjklnpqrs

+ (j in Ji/'lmpqr.I' +bipf/klmnqrs +(j irJ,klmnpn +0inJ,k/mnpq, +(j iSJjklmnpqr)'

Substituting eqns (82a) and (82b) into eqn (48), while taking account of the orthogonality relations of eqn
(9), we get

ii = -4
1 JK(N) da = (l-(j)uo - [~J F(N) 0 F(N) daJ:: (D'0U~)
n y 4n "

~; = 4~f K(N) da = (I-h)vo - [~f F(N) 0 F(N) daJ:: (H'0V~)
n v' 4n Y'

- 15 f -U' = 8" f K (N)F(N) da
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= (l-b)U~ -uoD' - G~LF(N) @ F(N) @F(N)daJ::(D' @ U~)

-[~~LF(N) @ !F(N) @ F(N) da}: (IK~@D')

- 15 fV' = -S ,K(N)F(N) da
n: Y'

= (l-h)V~ -voH'-G~LF(N) @ F(N) @ F(N) da} (H' @ V~)

- 315 f -IK' = 32n: y K(N)!F(N) da

= (l-b)lK~ - G~~L!F(N) @F(N) @F(N)daJ:: (D' @ U~)

-[~~~ L!F(N) @ !F(N) @ F(N) daJ ::: (IK~ @ D'),
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Before applying the recurrence formulae to perform the integrals in these expressions, it is useful to note that,
since U~, V~, D' and H' are s,t. and IK~ is c,s,t.,

[F(N) @ F(N)] :: (D' @ U~) = (N @ N) :: (D' @ U~)

[F(N) @ F(N)]:: (H' @ V~) = (N @ N) :: (H' @ V~)

[!F(N) @ F(N)] ::: (IK~ @ D') = (N @ N@N) ::: (IK~ @ D'),

Then, a direct but rather laborious calculation leads to the results (S4a)-(S4d),


